
Introduction MEM details Conclusions

Minimization Algorithms for the Maximal Entropy
Method

Antal Jakovac

University of Wuppertal
BME Technical University Budapest

April 23 2008.

Understanding QGP Through Spectral Functions and Eucledean Correlators, April 23-25, 2008, BNL



Introduction MEM details Conclusions

Outlines

1 Introduction
Overview
Euclidean correlators and spectral function
Statistical treatment

2 MEM details
Minimizing
Rescaling
Treatment of α
Effect of noise
Error estimation
Testing in QCD

3 Conclusions

Understanding QGP Through Spectral Functions and Eucledean Correlators, April 23-25, 2008, BNL



Introduction MEM details Conclusions

Overview

Outlines

1 Introduction
Overview
Euclidean correlators and spectral function
Statistical treatment

2 MEM details
Minimizing
Rescaling
Treatment of α
Effect of noise
Error estimation
Testing in QCD

3 Conclusions

Understanding QGP Through Spectral Functions and Eucledean Correlators, April 23-25, 2008, BNL



Introduction MEM details Conclusions

Overview

Spectral functions:

spectrum – density of states:

peaks: quasiparticles in a given quantum channel
peak width: decay constant or inverse lifetime
peak height: form factors, thermal abundance
continuum: collective phenomena

linear response theory: imaginary part of Green functions, by
Kramers-Kronig relation complete retarded Greens function
can be reconstructed – real time evolution, transport
coefficients

most reliable calculation of the spectral function?
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Overview

Nonperturbative method: MC lattice simulations

discrete Euclidean spacetime ⇒ provides Euclidean
propagators

to obtain spectral function we can use exact relations
but it needs analytic continuation – impossible from lattice
data

statistical analysis is ill-defined, because the number of
parameters (now value of the spectral function at each
frequency) � number of data

solution: build in prior knowledge into the statistical analysis
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Overview

best tool: Maximal Entropy Method (MEM)

relatively new in statistical analysis in high energy physics

Y. Nakahara, M. Asakawa and T. Hatsuda, Phys. Rev. D 60, 091503 (1999)
M. Asakawa, Y. Nakahara and T. Hatsuda, Progress in Particle and Nuclear Physics 46 (2001) 459-508.
F. Karsch, E. Laermann, P. Petreczky, S. Stickan and I. Wetzorke, Phys. Lett. B 530, 147 (2002)
M. Asakawa and T. Hatsuda, Phys. Rev. Lett. 92, 012001 (2004)
S. Datta, F. Karsch, P. Petreczky and I. Wetzorke, Phys.Rev. D 69, 094507 (2004)
T. Umeda, K. Nomura and H. Matsufuru, Eur.Phys.J. C39S1 (2005) 9-26

G. Aarts, C. Allton, M. B. Oktay, M. Peardon, J.-I. Skullerud, Phys.Rev. D 76, 094513 (2007)

algorithmic improvement, test, and obtain heavy quarkonium
spectral functions at zero and finite temperature
A.J., P. Petreczky, K. Petrov, A. Velytsky, Phys.Rev. D75, 014506 (2007)
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Euclidean correlators and spectral function

Nonperturbative method: MC lattice simulations

Euclidean propagators
DA(τ, x) = 〈TτA(τ, x)A(0)〉 , where A† = A self-adjoint
bosonic operator, τ = j × a, j = 1, 2, . . .Nt .

projection on representation of the spatial rotation group
DA,J(τ) =

∑
x RJ(x) DA(τ, x).

How do we read off the spectral function?
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Euclidean correlators and spectral function

Definition of the Euclidean spectral function & KMS relation:

DA(τ, x) =

∞∫
0

dωK (τ, ω)σA(ω, x), where

K (τ, ω) =
e(β−|τ |)ω + e |τ |ω

eβω − 1
=

cosh(β2 − |τ |)ω
sinh β

2ω

⇒ exact relation!

After projection

DA,J(τ) =

∞∫
0

dωK (τ, ω)σH,J(ω).

Goal: invert this relation
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Euclidean correlators and spectral function

For τ > 0 it is a (bilateral) Laplace transform:

DA(τ > 0) =

∞∫
−∞

dω eτω(1 + n(ω))σA(ω),

If we could analytically extend it to complex arguments, then the
inverse transformation would go with the Bromwich-integral:

(1 + n(ω))σA(ω) =
1

2πi

γ+i∞∫
γ−i∞

dt e−ωtDA(t).

Analytic continuation from a finite number of points is impossible.
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Statistical treatment

Instead: we treat the measured values of DA as constraints, and
look for the best σ that reproduces these values
⇒ statistical, χ2 method.

Likelihood of having σA spectral function P(σA) ∼ e−
1
2
χ2[σA] where

χ2[σA] =
∑
τ,τ ′

[DA(τ)− D̄A(τ)] C−1
ττ ′ [DA(τ ′)− D̄A(τ ′)],

where

D̄A are the measured propagator values

DA(τ) =
∫

K (τ, ω)σA(ω), the calculated propagator values,

Cτ,τ ′ is the correlation matrix of the measurements.

Understanding QGP Through Spectral Functions and Eucledean Correlators, April 23-25, 2008, BNL
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Statistical treatment

Problem: we know DA at most at O(10− 100) points, and we
need σA at O(1000) points ⇒ χ2 method is ill-defined.
Solutions

Ansatz for the spectral function – hard to find a reliable one!

choose a functional basis
H.B. Meyer, Phys.Rev. D76, 101701 (2007)

weight the values of σA with some pre-defined distribution
p(σA) (prior probability)

⇒ P(σA) ∼ e−
1
2
χ2[σA]p(σA)

Maximal Entropy Method (MEM) is based on this approach.
More mathematical description is based on Bayesian analysis

M. Asakawa, Y. Nakahara and T. Hatsuda, Progress in Particle and Nuclear Physics 46 (2001) 459-508.
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Statistical treatment

Weight probability is especially appropriate tool to take into
account prior knowledges. Now

σA is real and σA(ω > 0) > 0.

⇒ weight probability should allow only positive values.
Candidate: (continuous) Poisson distribution with pre-defined
positive averages:

κn

n!
e−κ →


n→ ασA(ω)
dn→ αdσA(ω)
κ→ αm(ω)

→
√

α

2πσA
e−αSSJ [σA,h],

where SSJ [σA, h] =

∫
dω

[
σA(ω) ln

σA(ω)

m(ω)
− σA(ω) + m(ω)

]
,

also known as the Shannon-Jaynes entropy.
m(ω) is called default model.

Understanding QGP Through Spectral Functions and Eucledean Correlators, April 23-25, 2008, BNL
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Statistical treatment

Integration measure: [dσA] =
∏
ω dσA(ω)

√
α

2πσA(ω)

To normalize

1∏
ωN (αm(ω))

∫
[dσA]e−αSSJ [σA,h] = 1,

where

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 0  1  2  3  4  5  6  7  8  9  10

N

αm

Understanding QGP Through Spectral Functions and Eucledean Correlators, April 23-25, 2008, BNL



Introduction MEM details Conclusions

Statistical treatment

New likelihood function Q =
1

2
χ2 + αSSJ

α controls the relative importance of the data and the
weighting distribution

α = 0 pure χ2 method

minimum is unique for α > 0
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Minimizing

Discretizing:

ω = {0 . . .Nω − 1}∆ω, Nω ∼ O(1000)
τ = {0 . . .Nτ/2− 1}β/Nτ

Minimum condition:

∂Q

∂σA(ω)
= α ln

σA(ω)

m(ω)
+
∑
τ,τ ′

K (τ, ω)C−1
ττ ′(DA(τ ′)− D̄A(τ ′)) = 0.

where DA(τ ′) = ∆ω
∑

ω′ K (τ ′, ω′)σA(ω′)

Nω coupled nonlinear equations

solution: recursive approximation with local linearization and
finding approximate minimum

number of parameters ∼ number of independent vectors ∼
rank of the second derivative matrix: number-of-data (Nτ/2)
⇒ inversion problematic

Understanding QGP Through Spectral Functions and Eucledean Correlators, April 23-25, 2008, BNL
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Minimizing

Bryan algorithm (R. K. Bryan, Eur. Biophys J. 18, 165 (1990)) uses singular
value decomposition to invert the matrix

number of independent singular vectors= Nτ/2 (G. Aarts, C. Allton, M.

B. Oktay, M. Peardon, J.-I. Skullerud, Phys.Rev. D 76, 094513 (2007))

Our improvement (A.J., P. Petreczky, K. Petrov, A. Velytsky, Phys.Rev. D75, 014506

(2007)):

identify the singular vectors exactly
reducing the problem to number-of-data dimensional
minimization problem
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Minimizing

Improvement

K (τ, ω) linear independent for different τs (∼ cosh(β2 − τ)ω)

make a basis on Nω dim. space: {Ri (ω)}i=0,...Nω−1,

where Ri (ω) = K (τi , ω) for i = 0, . . . Nτ
2 − 1.

expand lnσA(ω)/m(ω) in this basis:

ln
σA(ω)

m(ω)
=
∑
τ

s(τ)K (τ, ω) +
∑

i≥Nτ/2

s̃iRi (ω).

then we have∑
τ,τ ′

K (τ, ω)
[
αs(τ)δττ ′ + C−1

ττ ′(DA(τ ′)− D̄A(τ ′))
]
+
∑

i≥Nτ/2

s̃iRi (ω) = 0.

Understanding QGP Through Spectral Functions and Eucledean Correlators, April 23-25, 2008, BNL
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Minimizing

linear independence requires s̃i = 0

first Nτ/2 equation yields

α
∑
τ ′

Cττ ′s(τ ′) + ∆ω
∑
ω

K (τ, ω)σA(ω)− D̄A(τ) = 0,

where σA(ω) = m(ω) exp{
∑

K (τ, ω)s(τ).}
This equation can be written as ∂U

∂s = 0 with

U[s] =
α

2

∑
ττ ′

s(τ)Cττ ′s(τ ′) +

∫
dωσA(ω)−

∑
τ

s(τ)D̄A(τ).

⇒ potential minimization problem in Nτ/2 dimensions
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Rescaling

technical trick: at small ω K (τ, ω)→ T
ω . To avoid divergent

behavior, rescale by f (ω) ∼ ω for small frequencies:

K̃ (τ, ω) = f (ω)K (τ, ω)

We obtain σ̃A(ω) as a solution.
We reproduce the original spectral function from the condition that
it produces the same propagator:

K̃ (τ, ω)σ̃A(ω) = K (τ, ω)σA(ω) ⇒ σA(ω) = f (ω)σ̃A(ω)

not too sensitive to the exact choice of f (ω)

we used f (ω) = tanh(βω)
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Treatment of α

How should we treat α in P(σA) ∼ e−
1
2
χ2−αSSJ ?

at α = 0 the problem is ill-defined; numerically ∃ αmin, in our
cases typically O(10−13 – 10−20).

α 6= 0 introduces a systematic bias into the equation: not the
DA(τ) = D̄A(τ) choice is preferred. This disfavors to large α.

if α is too small, the spectrum becomes too peaky

there exists an optimal choice – how do we find it?

Understanding QGP Through Spectral Functions and Eucledean Correlators, April 23-25, 2008, BNL
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Treatment of α

Behavior as a function of α: noisy Gaussian curve (Nτ = 32)
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mock Gaussian
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α=opt (0.034)
α=0.1

too small α: sharp peaks

optimal α roughly reproduces
the original peak; considerable
fake high frequency part

too large α: too broad
distribution
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Treatment of α

Treat α as a parameter to fit:

use maximum likelihood to fix σA and α

modified likelihood function:

P(σA, α) = P(α)
∏
ω

√
α

σ A
exp

(
−1

2
χ2 − αSSJ

)
.

P(α) may contain an arbitrary α dependence (usual choices
are const., or 1/α) and normalization.

Usually strongly peaked in σA and flatter in α; in saddle point
approximation (minimum at σαA(ω)):

P(σA, α) ≈ P(α) δ(σA − σαA) e
1
2

P
ω ln α

λω+α
− 1

2
χ2(σαA )−αSSJ(σαA ),

where λω are eigenvalues of
1

2

√
σA(ω)

∂χ2

∂σA(ω)∂σA(ω‘)

√
σA(ω‘) matrix.

Understanding QGP Through Spectral Functions and Eucledean Correlators, April 23-25, 2008, BNL
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Effect of noise

There is statistical error in measurements
Its effect in a typical continuum spectral function (Nτ = 32):
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lowest energy state is well
reproduced

reducing the noise improves the
reproduction of the continuum
part

oscillation/peak even when the
mock model is flat
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Effect of noise

A more realistic example with semi-realistic charmonium masses
from A. Mocsy and P. Petreczky, Phys. Rev. D 73, 074007 (2006)
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m(ω)=0.004 ω2 first peak correct

three resonances appear as a
broad peak

continuum still contains
oscillations
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Error estimation

Error estimation:

we want to see the particle peaks

peak integral is pretty much insensitive to α.
Example: Gaussian mock data, peak region ωa = [0.3 : 1.1]
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we give the average peak height, and estimate the error by
jackknife method.
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Testing in QCD

Numerical simulation of QCD
(A.J., P. Petreczky, K. Petrov, A. Velytsky, Phys.Rev.D75:014506,2007)

Quenched QCD, gauge sector with standard Wilson action

anisotropic lattice (Fermilab formulation), bare anisotropy
parameter ξ = 4, tuned to reveal 4D rotational invariance

lattice sizes: from 83 × 64 to 243 × 32× 160.

measured mesonic operators in different quantum channels
(S,PS,V,AV) for heavy quarks (c,b), different spatial wave
functions (S and P-wave)

for heavy quarks: anisotropic clover action, tree level clover
coefficients

for physical results see A. Velytskys talk
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Testing in QCD

Zero temperature spectral function in the PS channel:
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⇒ larger peak integral
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Testing in QCD

α-dependence of the result:
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Testing in QCD

Comparing our algorithm and the Bryan algorithm:

numerically more stable, faster

the α-probability function:
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effect of the null-space of the SVD in the Bryan method
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Testing in QCD

spectral function:
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Testing in QCD

Default model dependence:
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Testing in QCD

Other zero temperature spectral functions:
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Conclusions:

MEM is powerful method to obtain spectral functions from
lattice QCD simulations

can be rephrased as a potential minimization problem in a
number-of-data dimensional space – faster, more reliable
algorythm than Bryan algorithm

peaky structures:

lower states are well reproduced
finite resolution
robust characterization: average peak value

default model dependence requires more clarification
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